Boiler Case

Study

"Coca-cola femsa san Fernando plant"

Group 4:

Asuncion, Arbyn Fontanilla, Rose Ann Hao, Kristine Lauren Rivera, Alyssa Simbulan, Rose Diane

INTRODUCTION

ABOUT THE COMPANY

Coca-Cola Bottlers Philippines, Inc. (CCBPI) is a Philippines-based company engaged in bottling and distribution of Coca-Cola soft drink brands. CCBPI is among the ten biggest Coca-Cola bottlers globally and one of the top 100 Philippine corporations. CCBPI operates 23 plants and 42 sales offices. Since 2013, CCBPI became jointly owned by Mexico-based Coca-Cola FEMSA, S.A. de C.V. and The Coca-Cola Company.

BACKGROUND

FEMSA's history in The Philippines began in January 2013, when FEMSA acquired 51% of Coca-Cola Bottlers Philippines, Inc. (CCBPI), from The Coca-Cola Company, and we established Coca-Cola FEMSA Philippines.

In 1979, a subsidiary of FEMSA acquired number of beverage bottling companies. At the time there were 13 distribution centers and with an output capacity of 83 million unit crates per year.

This initial operation became, 36 years later, the largest Coca-Cola products bottling in the franchise in the world, whereby they serve 351 million consumers, merchandising 3.4 billion crate units per in the 2.8 million points of sale we serve. All this thanks to the daily efforts of 83,000 plus men and women who work for them mainly in Latin America and the Philippines. Latin America has 45 bottling plants and for the Philippines, they have 19 bottling plants. Listed below are some of the Coca-cola FEMSA Bottling Plants.

Figure 1. Coca-cola FEMSA Bottling Plants

One of this bottling plants is the Coca-Cola Femsa San Fernando plant. It is located at Mac Arthur Highway Barangay Saguin City of San Fernando, Pampanga, Philippines.

NEED FOR BOILER

Coca-Cola FEMSA San Fernando Plant uses two boilers in their plant. Boiler 1-York Shipley has a model of MODEL- SPHV 150-6/94218 with a capacity or rating- 5049 lbs/hr (150 BHP). Boiler 1 is for back-up purposes. Boiler 2-Donlee has a capacity or rating of8625 lbs/hr (180BHP) and the model is sphv 200-6/200175. Boiler two is the main source of their steam in the whole plant. These two boilers are packaged fire tube boilers. The fuel for the boilers is SFO (special fuel oil) which has a composition of 70% diesel oil and 30% Bunker C. Figure 2 and 3 shows the actual boilers used in the plant of San Fernando Bottling Company.

Figure 2. Boiler 1- York Shipley

Figure 3. Boiler 2- Donlee

Boiler in Coca-Cola FEMSA San Fernando plant has a big role for the whole plant. These boilers are used in the 3 production line, for CO₂ vaporization, for water treatment plant and in CIP (Clean in Place) room. For production line, bottles are washed using steam and the boiler has a big role for this section. For CO₂ vaporization, their raw material for CO₂ is liquid. And the use of heat coming from the boiler is a great need to convert it into the gaseous phase. For water treatment plant and CIP room purposes, no further discussion where shared by the engineers and inspectors in the said plant.

Figure 4. Schematic flow of the purpose of the boiler

BOILER DESCRIPTION

BOILER SPECIFICATION

Listed Below is the specification of the two boilers in the plant

Table 1. Boiler Specifications

Brand	York Shipley Donlee		
Model	SPHV 150-6	SPHV 200-6	
Type of Boiler	Packaged Fire-tube Boiler		
Capacity	5049 lbs/hr	8625 lbs/hr	
Type of Fuel	Fuel Oil	Fuel Oil	

Set Pressure (Cut in/cut out)	30 to 60 psi	30 to 55 psi

FUEL CHARACTERISTICS

Listed Below is the fuel characteristics used in the two boilers in the plant

Table 2. Fuel Characteristics

Type of Fuel	SFO 60
Supplier	Petron
Density at 15°C, kg/m ³	876
Water Solubility	Insoluble
Odor	Characteristics of petroleum products
Appearance	Black liquid
Viscosity at 100°F, SSU	57.7
Stability	Normally stable at ambient temperature
Incompatibility	Strong oxidizing agents
Flash point, °C	71
Sediment and Water, % Vol	0.05
Sulfur, % wt	1.55
Ash, % wt	0.03
Carbon	85
Calorific Value, Kcal/kg	10,570

BOILER **O**PERATIONS

OPERATING CONDITIONS

Table 3. Operating Conditions of Boiler 1 and 2

	YORK SHIPLEY	DONLEE	
Model	SPHVE 150 - 6 / 94218	SPHVE-200-6 / 200175	
Capacity/Rating	5049 LBS / HR (150 BHP)	8625 LBS / HR (180 BHP)	
Design Pressure	50 to 300 PSIG		
Set Pressure	30 - 60 psi	30 - 55 psi	
Fuel	SFO 60	SFO 60	
Burner Fuel	Pressure Atomized Fuel Oil	Atomized, Fuel Pressure	
Electrical Motor	7.5 Hp		
Voltage	240/460) Volts	

RECORDED EFFICIENCY

The recorded efficiency of Coca-Cola FEMSA primary boiler is roughly around 60-70%.

OPERATIONAL ISSUE

On April 11, 2015 there was a recorded operational problem in the Donlee Boiler. The boiler failed to stop after it cut out when supplying steam in line 2 that results to delaying the production. The root cause of the malfunction was a loose ignition rod during the restarting of the boiler. The immediate corrective action to the problem is tracing the source of the failure; restarting the boiler and observing the individual component: fuel filters, electrical control, air and fuel line. Then inspect of fuel inlet and supply line. The preventive actions that should be done in order to handle the situations alike, the boiler controls and main burner should be restore and enhance personnel skills on trouble shooting and analysis.

ENVIRONMENTAL ISSUES

Liquefied petroleum gas or LPG is flammable mixtures of hydrocarbon gases liquefied through pressurization. It comes from natural gas and oil refineries. Burning LPG releases several contaminants like particulate matter, carbon monoxide (CO), nitrogen dioxide (NO₂) and sulfur dioxide (SO₂). Particulate matter is a complex mixture of extremely small particles and liquid droplets which is made up of number of components, including acids, organic chemicals, metals, and soil or dust particles that are dangerous to health when inhaled and can cause haze. Carbon monoxide (CO) is a colorless, odorless toxic flammable gas formed by incomplete combustion of carbon which can cause harmful health effects by reducing oxygen delivery to the body's organs. Nitrogen dioxide (NO₂) belongs to a group of highly reactive gases called Nitrogen oxides (NOx) that are formed when fuel is burned at high temperatures that can cause irritation and contributes to the formation and modification of other air pollutants, such as particulate matter, ozone and to acid rain. Sulfur dioxide is a toxic gas with pungent and irritating smell that reacts easily with other substances to form harmful substances, such as sulfuric acids, sulfurous acid, and sulfate particulates.

Coca-Cola FEMSA Philippines, Inc. San Fernando Plant hired the services of CRL Calabarquez Corporation to conduct ambient air sampling test within the location that was used to evaluate the actual concentrations of air pollutants during the plant's normal operation.

According to the test results shown in Table 3, the plant's average emission rate of particulate matter is 0.536kg/hr with an average concentration of 139 mg/Nm³. Sulfur dioxide average emission rate is 3.718 kg/hr with an average concentration of 961 mg/Nm³. It also emits 0.697 kg/hr of nitrogen dioxide with an average concentration of 180 mg/Nm³; and 0.015 kg/hr of carbon monoxide with an average concentration of 4 mg/Nm³. The table also presented that the concentrations of all air pollutants released are acceptable based on the DENR standard.

Table 4: Boiler Test Results

Daramatara	Unito	Dup 1	Bun 2	Dum 2	Average	DENR
Parameters	Units	KUII I	Kull Z	Kull 5	Results	standard
Particulate Matter	mg/Nm ³	150	129	137	139	150
Emission rate	kg/hr	0.572	0.503	0.533	0.536	
Sulfur Dioxide	mg/Nm ³	971	911	1001	961	1500
Emission rate	kg/hr	3.708	3.565	3.882	3.718	
Nitrogen Dioxide	mg/Nm ³	171	191	178	180	1500
Emission rate	kg/hr	0.654	0.747	0.691	0.697	
Carbon Monoxide	mg/Nm ³	1	11	1	4	500
Emission rate	kg/hr	0.003	0.042	0.003	0.016	

Based on the test results, there are air pollutants emitted by the plant's boiler. Even though the concentration of the said pollutants is acceptable by the DENR standard, they are still harmful not only to the environment but also to all living species. That is why there is a need for several pollutants control techniques to still lessen the emission of their boiler. The control techniques was not shared to our group because we were not able to talk to the right personnel however, we believe that they have some control techniques because they cannot have such good results if they do not have any control techniques used in reducing the emissions of the pollutants in their plant.

${\bf S}_{\text{UGGESTED BAT/BEP}}$ and ${\bf R}_{\text{EDESIGN OUTPUT}}$ using <code>FIRECAD</code>

SUGGESTE BAT/BEP

In order to reduce the emission of persistent organic pollutants from fossil fuel-fired utility and industrial boilers, the pathways for generation and release of such pollutants must be minimized in the design and operation of the process. This will be effectively achieved by conforming with the Best Available Technique (BAT) and Best Environmental Practices (BEP) for boilers.

The Coca-cola company did not reveal to us any BAT/BEP information for their boilers, but the following are recommendations that follows BAT and BEP:

1. BAT: Fuel quality

BEP: Fuel specification was defined for key fuel parameters and to introduce a monitoring and reporting protocol.

The fuel used is specialized fuel oil. Table 4 below shows the Fuel characteristics that agrees to the specifications of the required fuel type for the boiler.

Table 5. Fuel Characteristics and specifications

PROPERTY	TEST	SPECIFICATION	RESULT
Density at 15°C,	ASTMD1298	Report	0.8850
kg/L			
Viscosity at 100°F	ASTMD2161	60 MAX.	57

2. BAT: Combustion conditions

BEP:

- Identification of key process parameters, either from site-specific investigations or research undertaken on similar facilities elsewhere
- Introduced measures that enable control of key process parameters
- Introduced monitoring and reporting protocols for key process parameters
- Introduced an environmental management system that clearly defines responsibilities at all levels

While environmental engineer of the company was able to provide measure-enabling control, monitoring and reporting protocols of the key process parameters for their

boiler, the Department of Environment and Natural Resources (DENR) was the one responsible for the site-specific investigations and researches on the company's facilities.

The flue gas testing is being performed semi-annually by a representative from Petron and is analyzed and reported by the CRL Calabarquez Corporation shown in figure 5 below.

Emission Test Report						
		Tat	101			
	Don	lee Boiler	Test Res	ults		
	Coca-C	ola FEMSA	Philippines	, Inc.		
Sampling Date			Loguet 27, 2015	1730H		1
Repr Banging Time		1470H	100014	TATCH		and the second
End Bangling Tane			NS			DENR
Elguipmant Rated Cepecity			NIS			Stanoaro
Equipment Actual Load During San			Dontee Boller			
		-	Bun 2	Run 3	Average	
Paranisters	Units	HUR T	Plant a		163.05	-
Stack Temperature		163.45	162.70		8.30	
CO ₂ H stack gas	See	6.33	8.33	8.50	8.39	
O ₁ in stack gas		11.50	11.33	11.33	11.39	
Stack gas moleture contant	Sec.	8.90	11.32	0.39	9.87	
Plue are velocity	100	6.22	6.54	6.34	6.37	-
Max (Antun) university, feasible	m2000	103.39	108.70	105.48	105.86	
Fire of control foreigns at 572	dan'ma	63.65	65.25	64.66	64.52	-
DAA approximiting upper and an array	and and				130	150
Particulate Matter	mghten'	150	129	137	139	100
			6.644	0.633	0.536	-
Emission Rate	1077	0.572	0.903			
The second	(alana)	674	011	1.001	961	1,500
Sulfur Dioxide	ngree			144.4		
and the second se	Line	3.708	3.505	3.682	3.718	-
Units for risks	1					
Nitronen Dioxide	matter	171	191	178	180	1,500
ng ogen slokide.	-					
	kohr.	0.654	0.747	0.691	0.697	-
maximi Bate					1000	-
mission Rate	-			4	4	500
masion Rate	mgNer ¹	1	11	1.1.1		000
Impsion Rate	mgNm*	1	11	200		000

Figure 5. Flue gas analysis report

 BAT: Installation of the most appropriate air pollution control devices
BEP: Ensure the environmentally sound management of fly ash, coarse ash and flue gas treatment residues

The fuel used was specialized fuel oil and therefore, there were no traces of fly ash and coarse ash. From the flue gas analysis in Figure 2, it was reported that the emission test results passed the standards of the DENR, although the particulate matter has the highest average result to DENR standards ratio. Therefore, from the article in Air & Waste Management Association entitled

Fact Sheet: Air Pollution Emission Control Devices for Stationary Sources shown in Figure 6 below, the group recommends that fabric filters or bag houses be installed to the boilers to obtain higher boiler efficiency.

Common Control Devices	Pollutants	Examples Where Used
Packed towers, spray chambers, venturi scrubbers	Gases, vapors, sulfur oxides, corrosive acidic or basic gas streams, solid particles, liquid droplets	Asphalt and concrete batch plants; coal-burning power plants; facilities that emit sulfur oxides, hydrogen sulfide, hydrogen chloride, ammonia, and other gases that can be absorbed into water and neutralized with the appropriate reagent
Carbon adsorbers	Vapor-phase volatile organic compounds (VOCs), hazardous air pollutants (HAPs)	Soil remediation facilities, oil refineries, steel mills, printers, wastewater treatment plants
Fabric filters or bag houses	Particulate matter (PM)	Asphalt batch plants, concrete batch kilns, steel mills, foundries, fertilizer plants, and other industrial processes
Catalytic reactors, catalysts	VOCs, gases	Landfills, oil refineries, printing or paint shops
Cyclones	Large PM	Woodworking shops, pharmaceutical manufacturers, cotton gins, rock crushers, cement plants
Electrostatic precipitators (ESPs)	PM	Power plants, steel and paper mills, smelters, cement plants, oil refineries
Incinerators, thermal oxidizers, afterburners	VOCs, gases, fumes, hazardous organics, odors, PM	Soil contaminated with gasoline, landfills, crematories, inks from graphic arts production and printing, can and coil plants, hazardous waste disposal
Biofilters	VOCs, odors, hydrogen sulfide (H ₂ S), mercaptans (organic sulfides)	Wastewater treatment plants, industrial processes

Figure 6. Common Control Devices to Certain Polluants

 BAT: Introduce and follow planning cycles, implement appropriate inspection and maintenance cycles
BEP: Ensure all staff are appropriately trained in the application of the best

environmental practices relevant to their duties

The Coca-cola company has a contract with Petron for their semi-annual flue gas emission testing. The company also selected competent engineers who perform their inspection and maintenance duties well.

Table 6. Suggested BAT/BEF	Table	6.	Suggested	BAT/	/BEP
----------------------------	-------	----	-----------	------	------

ISSUE (with suggested	Best	Best available	Environmental
<u>equipment)</u>	<u>Environmental</u>	<u>techniques</u>	<u>benefit</u>
	Practices		
FUEL	Fuel Sourcing	Control fuel input	Minimizing of
	Fuel Monitoring	to meet specification by	POPs introduced into the
	Fuel	rejection,	combustion
	Specification	substitution,	system
		purification	
<u>Sensors/utilities</u>			
Combustion conditions	Monitoring	Automated or	Minimizing of
	combustion	computerized	formation of
	condition,	combustion	POPs during
	particularly	control system to	combustion
	-Temperature	maintain the ideal	
	(>900C)	conditions.	
	-Time (>1	-Maximized	
	second)	oxidation by	
	-Oxygen (in	maintaining ideal	
Soot blowers	excess)	fuel/oxygen mix	

Collection	Operation and maintenance of existing air pollution control device	Installation of air pollution control	Minimize Particulate Matters
CYCLONE SEPARATOR			
Waste disposal	Collect solid and liquid wastes from the combustion process and air pollution	Safe disposal Assess potential for waste volume reduction and recycling	Minimize and control the release of POPs
<u>Gas scrubber</u>			

REDESIGN OUTPUT USING FIRECAD

Through redesigning of the two boilers, the group aims to increase the efficiency using FireCad software.

1st Boiler: York Shipley

Figure 7. Actual efficiency for York Shipley

The Coca Cola Femsa Inc. Situated in Pampanga has two boilers. Both of the boilers used Special Fuel Oil No. 60 as the feed fuel for the evaporation of water.

Fuel Type used; Special Fuel

Carbon = 85.2

Hydrogen = 13.52

Sulfur = 1.16

Moisture = 0.06

Ash = 0.02

For the York Shipley SPHV 150 - 6 / 94218, the steam capacity used is 5049 lb/hr or 150 hp and the set pressure are in the range between 30 to 60 psi. Using the calculations obtained from their data from the fuel analysis, capacity, pressure and others, the efficiencies in GCV and NCV obtained were 60.74 and 64.26, respectively.

2nd Boiler: Donlee

Figure 8. Actual efficiency for York Shipley

For the Donlee SPHV 200 - 6 / 200175, the steam capacity used is 8625 lb/hr or 180 hp and the set pressure are in the range between 30 to 5 psi. Using the calculations obtained from their data from the fuel analysis, capacity, pressure and others, the efficiencies in GCV and NCV obtained were 57.89 and 61.92, respectively.

The efficiencies of the two boilers are below the acceptable range of 80%. This is due to the large friction losses of the boiler which were adapted from its old age and ineffective maintenance, and the lack of economizer.

The efficiencies of the two boilers can be increased by installing the economizers, turbulators and soot blowers on both boilers.

1st Boiler: York Shipley

Figure 9. Redesigned of York Shipley

Through the installations of the add-on equipments for the York Shipley, the efficiency increased from 60% to 80%.

2nd Boiler: Donlee

TB Economiser Mec	Design	
TB Economiser Med Boiler Configuration - Furnace Details : No Of Furnaces Furnace ID Furnace Length Second Pass : No Of Tubes Tube OD Tube Len(Effect) Tube Thickness Tube OD Tube Len(Effect) Tube Thickness Fourth Pass : No Of Tubes Tube OD Tube Len(Effect) Tube OD Tube Len(Effect) Tube OD Tube Len(Effect) Tube CD Tube Len(Effect) Tube Thickness Besured Chember	Design Steam Capacity 8000 1 Stm Pressure(g) 293027.2 1023.3 Combustion Details Dry Gas Loss (GCV basis) 4.53 99 Moist in Air 0.11 99 Moist in Air 0.11 90 Gas Loss (GCV basis) 4.53 63.5 UnRurnt Loss 0.5 90 Gas Mass Flow 8022.64 63.5 Gas Mass Flow 8022.64 50 Gas Normal Vol Flow 6172.48 50 Unit Wet Gas 16.71 0 Unit Wet Air 15.71 0 Project Donlee Redesigned	Boiler Performance Steam Capacity-F≜ 100C 8000 Steam Capacity-F≜ 100C 8000 Steam Capacity-F≜ 100C 8000 Stm Pressure(g) 0.293e06 Efficiency-GCV 87.87 Efficiency-GCV 92.6 SystemExitTemp NaN Fuel Name FurnaceOil Fuel-Consumption 481.99 Fuel-GCV 10200 Fuel-NCV 9679.28 Total PressureDrop 147.14 Total Heat Load 4.32e06 Gross Heat Input 4.665e06 Furnace ExitGasTemp 1387.2 II Pass ExitGasTemp 797.69 IV Pass ExitGasTemp 797.69 Heatin Surface Area 208.75
Reversal Chamber No ID Length	Redesign Save Exit 1690.93 MKS Units: Stm Cap-Kg/hr, Stm Press-Kg/Cm2; Tr - Kcal/hr; Press Drop-m of WC; Area-Squitt, Gas	Furn VRR (RC not incl.) 1.233e06 amp-degC: Cal Val-Kcal/Kg: Length/Dia = mm; HeatLoad Mass Flow-Kgh/KGas Nor Flow-Nm3/hr; GasMassVel-

Figure 10. Redesigned of Donlee

Through the installations of the add-on equipments for the Donlee, the efficiency increased from 60% to 80%.

CONCLUSION and **A**CKNOWLEDGEMENT

CONCLUSION

For boiler operations, BAT/BEP should be a requirement. These are not only for the purpose of increasing the efficiency of the boiler but also for safety measures. These safety measures must be followed not just to pass the requirement for boiler operation but also to ensure the safety of human health especially during the combustion of fuel or boiler operation wherein emission of hazardous chemical like POPs are very critical.

- Coca-cola FEMSA uses 2 boilers which are York Shipley and Donlee.
- These are used for Production line, CO2 vaporizer, Water treatment plant and CIP room
- SFO 60 is the fuel used that has a calorific value of 10,570 kcal/kg.
- They have an efficiency around 60-70% but can be improved to 80% by using different auxiliaries such as economizer, turbulators and soot blowers.

ACKNOWLEDGEMENT

My group and I want to give our deepest gratitude to those people who accommodated all are inquiries about the boiler in Coca-Cola FEMSA San Fernando Plant. To Engr. Vladimir who approved our boiler tour in the said plant, to Engr. Jade Ayuyang who discussed about the environmental impact of their boiler (emissions), and to Mr. Jerwin Reyes who gave the whole

tour and discussion about the boiler.

